Senin, 04 Mei 2015

Fenomena yang Berhubungan Dengan Ilmu Fisika

Banyak fenomena menarik alam, menyimpan “misteri” tanda kebesaran Tuhan Yang Maha Esa. Pertanyaan-pertanyaan muncul sebagai langkah awal untuk menguak ”misteri” tersebut. Pertanyaan yang sederhana diajukan oleh orang sekitar kita tentang fenomena alam mungkin akan sulit kita jawab. Berikut penjelasan fenomena-fenomena alam 
                
1. Mengapa langit biru?

Sinar matahari yang menerangi langit siang berwarna putih yang “terbuat” dari warna pelangi.Debu dan partikel-partikel udara lain di udara mengurai cahaya dari matahari dan biru keluar paling kuat. Delapan foton cahaya biru muncul untuk setiap satu merah (cahaya biru yang memancar keluar dari molekul delapan kali lebih terang daripada cahaya merah). Langit tidak “murni” biru, karena warna-warna lain juga mencapai ke mata kita tetapi warna yang lain “ditenggelamkan” oleh warna biru.

2. Mengapa warna api biasanya orange?

Warna api tergantung dari suhu. Warna biru meanandakan suhu yang sangat tinggi. Api memerlukan oksigen. Ketika lilin terbakar, bagian tengah api,dekat dasarnya, tidak mendapatkan banyak oksigen. Jadi tampak gelap. Tetapi bagian luar dan puncak api mendapat banyak udara, di bagian ini api menyala terang. Saat sumbu terbakar dan lilih meleleh dan mendesis, karbon-serpihan lilin yang terbakar hangus dan berterbangan. Serpihan kecil karbon ini sangat panas, sehingga nyala api berwarna orange.

3. Mengapa bintang berkelap-kelip?

Bintang sebenarnya tidak berkelap-kelip. Bintang kelihatan berkelap-kelip apabila dilihat dari jarak jauh dan ketika cahayanya harus melewati udara dalam perjalananya ke mata kita. Saat sinar bintang melewati udara rapat kemudian udara tipis maka bintang tampak berkelap-kelip.

4. Dari mana datangnya pelangi?

Resep pelangi: butir-butir air di udara, cahaya, dan seseorang untuk melihatnya. Matahari harus “rendah” dilangit (sedikit di bawah garis cakrawala), anda berdiri membelakangi matahari memandang ke arah di mana hujan turun atau hujan baru turun. Seberkas sinar matahari menembus pusat tetesan air hujan kemudian sinar matahari dibiaskan oleh tetesan air hujan akibatnya sinar putih mendadak terpecah menjadi berkas-berkas warna yang cantik (pelangi).

5. Mengapa gelembung bulat?

Gelembung bulat karena tegangan permukaan menyebabkan lapisan cairan menarik diri ke bentuk yang mungkin paling kompak (stabil). Bentuk kompak di alam adalah bola. Jadi udara di dalam ditahan oleh gaya yang sama di sekeliling gelembung (sampai gelembung tidak pecah).

6. Bagaimana cara magnet menarik?

Magnet bisa menarik karena atom-atom dalam kelompok yang disebut domain magnetik (pertikel elementer) memiliki medan magnet dan menghadap ke arah yang sama. Jadi setiap domain seperti magnet kecil. Medan magnet tersebut disebabkan oleh arus listrik elektron-elektron yang bergerak mengorbit nukleus atom.

7. Bagaimana embun terjadi?

Embun terbentuk ketika udara yang berada di dekat permukaan tanah menjadi dingin mendekati titik dimana udara tidak dapat lagi menahan semua uap air. Kelebihan uap air itu kemudian berubah menjadi embun di atas benda-benda di dekat tanah. Sepanjang hari benda-benda menyerap panas dari matahari. Sedangkan di malam hari benda-benda kehilangan panas tersebut melalui suatu proses yang disebut radiasi termal. Ketika benda-benda di dekat tanah menjadi dingin, suhu udara disekitarnya juga menjadi berkurang. Udara yang lebih dingin tidak dapat menahan uap air sebanyak udara yang lebih hangat. Jika suhu udara bertambah semakin dingin, maka akhirnya akan mencapai titik embun. Titik embun adalah suhu dimana udara masih sanggup menahan uap air sebanyak mungkin. Bila suhu udara semakin bertambah dingin, sebagian uap air akan mengembun di atas permukaan benda yang terdekat.

8. Mata terlihat merah hasil foto kamera

Cahaya blitz dari kamera masuk ke mata dan difokuskan ke retina yang terdapat banyak pembuluh darah. Tiba di retina, bayangan sinar tadi dibuat bayangan oleh kamera di film. Dan ketika film di cetak, warna merah retina akan muncul di foto mata, sehingga mata terlihat berwarna merah.

9. Bagaimana kabut terbentuk?

Pada umumnya, kabut terbentuk ketika udara yang jenuh akan uap air didinginkan di bawah titik bekunya. Jika udara berada di atas daerah perindustrian, udara itu mungkin juga mengandung asap yang bercampur kabut membentuk kabut berasap, campuran yang mencekik dan pedas yang menyebabkan orang terbatuk. Di kota-kota besar, asap pembuangan mobil dan polutan lainnya mengandung hidrokarbon dan oksida-oksida nitrogen yang dirubah menjadi kabut berasap fotokimia oleh sinar matahari. Ozon dapat terbentuk di dalam kabut berasap ini menambah racun lainnya di dalam udara. Kabut berasap ini mengiritasikan mata dan merusak paru-paru. Seperti hujan asam, kabut berasap dapat dicegah dengan mengehentikan pencemaran atmosfer.
 
10. Mengapa kita tidak boleh melihat gerhana matahari dengan mata telanjang?

Pada saat kita menatap matahari ketika bagian matahari tertutup bulan, cahayanya tidak terlalu menyilaukan sehingga otak tidak memerintahkan pupil mata untuk mengecil. Akibatnya cahaya matahari yang kurang menyilaukan (tetapi tetap berbahaya) itu masuk dengan leluasa ke mata sampai ke retina. Bagian retina yang menerima cahaya matahari ini akan terbakar, tetapi karena retina tidak punya syaraf rasa sakit, kita tidak akan terasa apa-apa. Gangguan penglihatan baru mulai terjadi beberapa menit atau jam sesudah melihat gerhana.

Penemuan Penting dalam Dunia Fisika

Penemuan Penting Dalam Fisika




1. Hukum Falling Bodies (1604)




Galileo Galilei menjungkirbalikkan hampir 2.000 tahun Aristoteles keyakinan bahwa benda lebih berat jatuh lebih cepat daripada yang lebih ringan dengan membuktikan bahwa semua benda jatuh dengan kecepatan yang sama.


2. Universal Gravitation (1666)


Isaac Newton sampai pada kesimpulan bahwa semua benda di alam semesta, dari apel ke planet, mengerahkan gaya tarik gravitasi satu sama lain.


3. Laws of Motion (1687)


Isaac Newton perubahan pemahaman kita tentang alam semesta dengan merumuskan tiga hukum untuk menjelaskan gerakan benda. 1) Sebuah benda yang bergerak tetap bergerak, kecuali jika gaya eksternal diberikan kepadanya. 2) Hubungan antara massa sebuah benda (m), percepatan (a) dan diterapkan gaya (F) adalah F = ma. 3) Untuk setiap aksi ada reaksi sama dan berlawanan.


4. Hukum Kedua Termodinamika (1824 - 1850)


Ilmuwan yang bekerja untuk meningkatkan efisiensi mesin uap mengembangkan pemahaman tentang konversi panas menjadi kerja. Mereka belajar bahwa aliran panas dari yang lebih tinggi ke temperatur yang lebih rendah adalah apa yang mendorong sebuah mesin uap, menyerupakan proses aliran air yang mengubah roda penggilingan. Pekerjaan mereka mengarah pada tiga prinsip: panas mengalir secara spontan dari panas ke dingin tubuh; panas tidak bisa sepenuhnya dikonversi menjadi bentuk lain energi; dan sistem menjadi lebih teratur dari waktu ke waktu.


5. Elektromagnetisme (1807 - 1873)


Percobaan perintis mengungkap hubungan antara listrik dan magnet dan mengarah pada satu set persamaan yang menyatakan hukum dasar yang mengatur mereka. Salah satu hasil hasil eksperimen secara tak terduga dalam kelas. Pada 1820, fisikawan Denmark Hans Christian Oersted sedang berbicara kepada siswa tentang kemungkinan bahwa listrik dan magnet saling berhubungan. Selama kuliah, sebuah eksperimen menunjukkan kebenaran teori-nya di depan seluruh kelas.


6. Relativitas Khusus (1905)


Albert Einstein menggulingkan asumsi-asumsi dasar tentang waktu dan ruang dengan menjelaskan bagaimana jam berdetak lebih lambat dan jarak muncul untuk meregangkan sebagai objek mendekati kecepatan cahaya.


7. E = mc ^ 2 (1905)


Atau energi adalah sama dengan massa kali kecepatan cahaya kuadrat. Albert Einstein rumus terkenal membuktikan bahwa massa dan energi adalah manifestasi yang berbeda dari hal yang sama, dan bahwa jumlah yang sangat kecil massa dapat dikonversi menjadi jumlah yang sangat besar energi. Salah satu implikasi mendalam penemuan adalah bahwa tidak ada objek dengan massa yang bisa pergi lebih cepat daripada kecepatan cahaya.


8. The Quantum Leap (1900 - 1935)


Untuk menggambarkan perilaku partikel-partikel subatomik, satu set hukum-hukum alam yang dikembangkan oleh Max Planck, Albert Einstein, Werner Heisenberg dan Erwin Schrödinger. Sebuah lompatan kuantum didefinisikan sebagai perubahan dari sebuah elektron dalam sebuah atom dari satu keadaan energi yang lain. Perubahan ini terjadi sekaligus, tidak secara bertahap.


9. The Nature of Light (1704 - 1905)


Pemikiran dan eksperimentasi oleh Isaac Newton, Thomas Young dan Albert Einstein mengarah pada pemahaman tentang apa cahaya, bagaimana berperilaku, dan bagaimana ditularkan. Menggunakan prisma Newton untuk memecah cahaya putih menjadi warna dan konstituennya prisma lain untuk mencampur warna dalam cahaya putih, membuktikan bahwa cahaya berwarna putih dicampur bersama-sama membuat cahaya. Young menetapkan bahwa cahaya adalah gelombang dan menentukan panjang gelombang warna. Akhirnya, Einstein mengakui bahwa cahaya selalu bergerak pada kecepatan konstan, tidak peduli kecepatan pengukur.


10. Neutron (1935) 


James Chadwick menemukan neutron, yang, bersama-sama dengan proton dan elektron terdiri dari atom. Temuan ini secara dramatis mengubah model atom dan mempercepat penemuan dalam fisika atom.


11. Superkonduktor (1911 - 1986)


Penemuan yang tidak terduga bahwa beberapa material tidak memiliki perlawanan terhadap aliran listrik janji untuk merevolusi industri dan teknologi. Superkonduktivitas terjadi dalam berbagai material, termasuk unsur sederhana seperti timah dan alumunium, berbagai logam paduan dan senyawa keramik tertentu.


12. Quark (1962)


Murray Gell-Mann mengusulkan keberadaan partikel dasar yang menggabungkan komposit membentuk objek seperti proton dan neutron. Proton dan neutron masing-masing mengandung tiga quark.

13. Nuclear Forces (1666 - 1957)


Penemuan kekuatan dasar di tempat kerja pada tingkat subatomik menimbulkan kesadaran bahwa semua interaksi di alam semesta adalah hasil dari empat gaya fundamental alam - yang kuat dan gaya nuklir lemah, gaya elektromagnetik dan gravitasi.